Part Number Hot Search : 
6594D FAIRCHIL N74F846D SDHN15KM P6KE18CA 469ID WR3362W STK2038
Product Description
Full Text Search
 

To Download HPMX-2006 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 0.8 - 2.5 GHz Upconverter/Amplifier Technical Data
HPMX-2006
Features
* Wide Band Operation RF Output: 800 -2500 MHz IF Input: DC- 900 MHz * 2.7- 5.5 V Operation * Mixer + Amplifier: 38 mA Mixer only: 15 mA Standby Mode: <40 A * Differential LO and High Impedance IF Inputs * -8.5 dBm Mixer and +4.5 dBm Amplifier Output Power at 1900 MHz * JEDEC Standard SSOP-16 Surface Mount Package
Package Pin Configuration
LO in LO in Ref IF in IF in Amp Ve1 Amp RF in enable 1 2 16 15 Mixer Vc Gnd Amp Vc Amp RF Out Amp Ve2 Amp 1 Ve2 Gnd 1 Mixer RF Out
HPMX 2006 YYWW
3 4 5 6 7 8
14 13 12 11 10 9
Plastic SSOP-16
Description
The HPMX-2006 upconverter/ amplifier IC is designed to meet the needs of cellular and PCS telephone and wireless LAN applications. The IC consists of a Gilbert Cell mixer optimized for upconversion followed by a post-amplifier. The mixer and amplifier are independent allowing the insertion of a sideband filter between the two. The mixer is double balanced. Both LO and IF inputs may be run either single-endedly, or in differential mode to reduce LO leakage. LO inputs are matched near 50 ; high impedance IF inputs allow the mixer to be used as a BPSK modulator. An integrated transformer on the mixer RF port creates a single-ended, matched to 50 output at 1900 MHz, and also reduces common mode noise.
HP 200 MX YY 6 WW
Applications
* Cordless Handsets and Base Stations * Wireless Data Terminals * Cellular/ PCS Handsets and Base Stations
Functional Block Diagram
IF INPUT ENABLE
LO INPUT
AMP OUTPUT
HPMX-2006 RF OUTPUT AMP INPUT
5966-0455E
7-66
The amplifier features a singleended 50 match on the input port. The open collector output is easily matched with a simple 2 element network, providing flexible use and good power added efficiency. The amplifier can be disabled to allow use of the mixer alone, reducing the current
draw to around 15 mA. The entire IC can be put into a standby mode reducing current consumption to under 40 A from a 3V source. The SSOP-16 package insures that the IC occupies a minimal amount of printed circuit board space.
The HPMX-2006 is manufactured using Hewlett-Packard's 30 GHz ISOSAT-II process which combines stepper lithography, self alignment, ion implantation techniques and gold metalization to produce state-of-the-art RFICs.
HPMX-2006 Absolute Maximum Ratings[1]
Mixer Symbol VCC Pdiss Parameter Supply Voltage Power Dissipation [2,3] Single-Ended Input Mixer LO Voltage Single-Ended Input Mixer IF Voltage Amplifier Input RF Power Junction Temperature Storage Temperature Units V mW V V dBm C C Min. -0.2 Max. 8 174 VC + 0.2 VC + 0.2 +150 +150 Amplifier Min. -0.2 Max. 8 274
Tj TSTG
-40 -40
-40 -40
+ 5 +150 +150
Notes: 1. Operation of this device in excess of any of these parameters may cause permanent damage. 2. TCASE = 25C 3. Derate at 7 mW/C for TCASE >82C.
Thermal Resistance [2]: jc = 150C/W
Recommended operating range of Vcc = 2.7 to 5.5 V, Ta = -40 to + 85C
Standard Test Conditions
Unless otherwise stated, all test data was taken on packaged parts under the following conditions: Vcc = +3.0 VDC, Zout = 50 , ambient temperature Ta = 25C LO input: 1750 MHz, -3 dBm, single-ended IF input: 150 MHz, 300 mVp-p, single-ended, terminated in a 50 pull-up resistor (R1R2 in Figure 11) Zout mixer = Zin amp = 50 , Zout amp per Figure 11 ( (L=2.8 nH, C=2.2 pF) See Figure 11 for test set-up schematic diagram.
HPMX-2006 Guaranteed Electrical Specifications
Standard test conditions apply unless otherwise noted. Symbol IC mix IC amp IC mix IC amp Pout Pout Parameters and Test Conditions Sleep Mode Current, Mixer Sleep Mode Current, Amplifier Mixer Transmit Current Amplifier Transmit Current SSB Output Power, Mixer Only Output Power, Amplifier Only (-9.5 dBm in) Units A A mA mA dBm dBm Min. Typ. Max. 20 20 18 28
-11 +2.5
15 23 -9 +3.8
7-67
HPMX-2006 Summary Characterization Information
Standard test conditions apply unless otherwise noted. Table 2 applies for 900 and 2500 MHz. IF remains 150 MHz for all frequencies. Performance vs. Frequency 900 MHz 1900 MHz 2500 MHz Mixer RF Output Power, Vif = 300 mVpp -8 -9 -12.5 Mixer RF Output Power, Vif = 30 mVpp -28 -28 -32 Mixer RF Output Power at 1 dB Gain Compression -7 -8.5 -12 Mixer Output Third Order Intercept Point + 3 + 2 -4 Mixer LO Suppression 25 21 18.5 Mixer Phase Noise (4 MHz offset) -143 -144 -146 Amplifier RF Output Power at Pin = -9.5 dBm + 9 +3.8 -2 Amplifier RF Output Power at 1 dB Gain Compression + 9 +4.5 +2.5 Amplifier Output Third Order Intercept Point +19 +14 +12 Small Signal Amplifier Gain 21 14.5 9.5 Amplifier Noise Figure 8.5 9 9.5 Amplifier Input Return Loss 10.5 9.5 10.5 Amplifier Output Return Loss 9.5 6.5 12 Isolation, Mixer Output to Amplifier Input 32 30 30
Units dBm dBm dBm dBm dBc dBm/Hz dBm dBm dBm dB dB dB dB dB
HPMX-2006 Pin Description Table
No. Mnemonic Description 1 LO differential mi xer LO 2 LObar input 3 Ref internal voltage reference 4 5 6 7 8 9 10 11 12 13 14 15 16 differential mixer IF input ground amplifier input chip (amp and mixer) enable input MxRFout mixer RF output gnd1 ground Amp1Ve2 ground AmpVe2 ground AmpRFout amplifier output AmpVc gnd MxVc amplifier Vcc input ground mixer Vcc input IF IFbar AmpVe1 AmpRFin Enable Typical Signal -3 dBm from single-ended, 50 source Notes LO identical to LObar. DC present (needs Cbl). Supplies base bias for AC-coupled IF. IF identical to IFbar. Must bias per Table 3. Disconnect for mixer only DC present (needs Cbl)
-6 dBm from single-ended, 50 W source 0 V or unconnected -9.5 dBm from 50 source <0.4V disables >2.5V enables IC -9.0 dBm into 50 load 0V 0 V or unconnected 0 V or unconnected +3 dBm into 50 load 3 V, 23 mA 0V 3 V, 15 mA
At DC ground Disconnect for mixer only Disconnect for mixer only DC present (needs Cbl). RF match required.
7-68
HPMX-2006 Typical Performance
Standard test conditions apply unless otherwise noted.
30 25 15 CURRENT (mA) CURRENT (mA) 20 15 10 5 0 0 1 2 3 4 5 6 VOLTAGE (V)
TA = +85C TA = +50C TA = +25C TA = +0C TA = -40C
20
8 7 6 POWER (dBm) Gss
16
10
TA = +85C TA = +50C TA = +25C TA = +0C TA = - 40C
4 3 2 1
P 1dB Pin = -9.5 dBm
8
5
0 0 1 2 3 4 5 6 VOLTAGE (V)
0 -40
-20
0
20
40
60
80
0 100
TEMPERATURE (C)
Figure 1. Mixer Device Current vs. Device Voltage over Temperature.
Figure 2. Mixer Device Current vs. Device Voltage over Temperature.
Figure 3. Amp. Output at Pin = 9.5 dBm and at 1 dB Compression and Small Signal Gain vs. Temperature.
-5
0 P 1dB -10 POWER (dBm) 300 mV POWER (dBm)
0 5 -10 -15 -20 -25 -30 30 mV 300 mV POWER (dBm) P 1dB
-10 -15 -20 -25
300 mV P 1dB
-20 30 mV -30 LO lkg -40
30 mV -30 -35 LO lkg
-35 LO lkg -50 0 200 400 600 800 1000 FREQUENCY (MHz) -40 -10 -8 -6 -4 -2 0 2
-40 -40
-20
0
20
40
60
80
100
LO POWER (dBm)
TEMPERATURE (C)
Figure 4. Mixer Output at Vif = 30 mVpp and 300 mVpp, at P1dB, and LO Suppression at Vif = 300 mVpp vs. IF Frequency.
0 -20
POWER (dBm)
Figure 5. Mixer Output at Vif = 30 mVpp and 300 mVpp, at P1dB, and LO Suppression at Vif = 300 mVpp vs. LO Power.
Figure 6. Mixer Output at Vif = 30 mVpp and 300 mVpp, at P1dB, and LO Suppression at Vif = 300 mVpp vs. Temperature.
-40 -60 -80 -100 1200
1400
1600
1800 FREQUENCY (MHz)
2000
2200
2400
Figure 7. Mixer Output Spectrum for 1 GHz Bandwidth, Centered at 1900 MHz.
Table 1. Typical Output Spurs for 0 - 6 GHz, Standard Test Conditions.
-10 0
-9
-8
-7
-6
-5
-4
-3
-2
-1
0 -
1
2
3
4
5
6
7
8
9
10
-38.9 -32.2 -44.1 -49.3 -67.2 -64.4 <-80 -73.6 <-80 <-80
1 <-80 <-80 <-80
-70 -78.5 -52.1 -58.8 -33.2 -38.9 -10.1 -31.7 -8.7 -38.3 -38.3 -59.0 -50.1 -39.2 -50.1 -50.2 <-60 <-60 <-60 <-60
2 <-80 <-60 <-60 <-60 <-60 <-60 -49.5 -50.0 -33.2 -39.1 -42.1 -50.4 -36.1 -48.8 -58.8 <-60 <-60 <-60 <-60 <-60 <-60 3 <-60 <-60 -38.4 -58.6 <-60 <-60 <-60 -52.7 <-60 <-60 -45.6 -37.1 -52 4 <-60 -45.5 -52.0 <-60
7-69
GAIN (dB)
5
HPMX-2006 Mixer Port Impedances
GHz 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 Mag. 0.86 0.81 0.84 0.88 0.93 0.91 0.80 0.81 0.80 0.80 0.85 0.84 Deg. -4 -3 -1 -3 -9 -15 -19 -23 -28 -30 -34 -39 GHz 0.50[1] 0.75 1.00 1.25 1.50 1.75 1.75[2] 2.00 2.25 2.50 2.75 3.00 Mag. 0.49 0.48 0.46 0.42 0.40 0.31 0.24 0.20 0.20 0.16 0.37 0.53 Deg. -49 -63 -73 -82 -102 -114 -131 147 87 15 -131 168 GHz 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 Mag. 0.60 0.55 0.52 0.36 0.18 0.17 0.20 0.24 0.28 0.34 0.37 Deg. 82 38 -5 -35 -44 -17 5 13 17 12 3
Figure 8. Impedance of Mixer IF Port. Circuit of Figure 11 with 1 k Pull up Resistors for the IFs and LO and RF Ports Terminated in 50 .
Figure 9. Impedance of Mixer LO Port. [1] Circuit of Figure 11 with IF and RF Ports Terminated in 50 . [2] As above but LO RC combination in Figure 11 changed from 12 and 12 pF to 0 and 2.7 pF (recommended use for >1.75 GHz).
Figure 10. Impedance of Mixer RF Port. Circuit of Figure 11 with IF and LO Ports Terminated in 50 .
Typical Scattering Parameters, Common Emitter, ZO = 50 , VCC = 3 V, IC = 23 mA
Freq. GHz 0.1 0.5 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 3.0 Mag. 0.51 0.37 0.37 0.37 0.39 0.39 0.40 0.41 0.40 0.40 0.38 0.37 0.36 0.33 0.33 0.31 0.31 0.30 0.32 0.32 0.32 S11 Ang. 149 144 120 113 104 96 88 81 75 67 62 61 58 62 62 64 70 75 79 84 94 dB 19.72 17.42 16.56 16.24 15.99 15.55 15.16 15.07 14.50 13.37 12.69 12.46 11.64 11.17 10.81 9.99 9.37 8.66 8.10 7.16 4.45 S21 Mag. 9.68 7.43 6.73 6.49 6.30 5.99 5.73 5.67 5.31 4.66 4.31 4.20 3.82 3.62 3.47 3.16 2.94 2.71 2.54 2.28 1.67 Ang. -26 -49 -76 -85 -94 -101 -112 -120 -125 -134 -145 -148 -153 -161 -168 -175 178 173 170 166 134 dB -37.08 -39.17 -43.10 -36.48 -40.00 -41.94 -47.96 -38.42 -40.92 -46.02 -33.98 -33.15 -32.77 -34.42 -34.89 -29.37 -30.75 -30.75 -33.15 -32.77 -28.40 S12 Mag. 0.014 0.011 0.007 0.015 0.010 0.008 0.004 0.012 0.009 0.005 0.020 0.022 0.023 0.019 0.018 0.034 0.029 0.029 0.022 0.023 0.038 S22 Ang. -43 11 1 25 22 28 118 68 85 147 99 102 102 88 91 96 102 89 90 89 99 Mag. 0.91 0.78 0.80 0.83 0.84 0.84 0.84 0.85 0.87 0.84 0.85 0.84 0.84 0.79 0.77 0.75 0.72 0.69 0.67 0.65 0.49 Ang. -3 -16 -22 -23 -26 -29 -32 -33 -36 -40 -40 -44 -49 -51 -54 -58 -62 -65 -70 -76 -103
7-70
HPMX-2006 Test Circuit
off board Cbl (>100 pF) mixer LO input C1 R3 LO in 1000 pF 10 pF 12 pF 12 50 IF in 50 50 IF source 50 IF in off board Cbl (>100 pF) Amp1 Ve1 Amp Ve2 Amp1 Ve2 gnd Mixer RF out Mixer RF output (at DC ground) Amp RF out printed 3V 100 pF Ref gnd Amp Vc 22 pF 2.2 pF Amp RF output LO in Mixer Vc 0.01 F 3V
off board Cbl (>100 pF)
Amp RF in amp RF input off board Cbl (>100 pF) standby input enable
Figure 11. Test Board Configuration.
HPMX-2006 Circuit Use
Cbl (>100 pF) mixer LO input C1 R3 LO in 1000 pF 10 pF C6 Rterm C6 IF source (Rs = Rterm) C15 standby input enable Mixer RF out L3 Sideband Filter Amp1 Ve1 Amp RF in Amp1 Ve2 gnd C14 R2 IF in Amp Ve2 R1 IF in Amp RF out L2 Vcc C12(100 pF) Ref gnd Amp Vc 22 pF C8 Amp RF output LO in Mixer Vc 0.01 F Vcc
Figure 12. Schematic Diagram of Typical IC Use.
Table 2 lists values for components that change depending on Component
C1, R3
frequency of operation and AC or DC coupling of the IF input. For Value Condition
F LO < 1.75 GHz
Table 2. Values for Variable Components (see next page for details).
2.5 GHz operation, a pre-amplifier may be inserted between the Mixer output and the Amp RF in. Condition
F LO > 1.75 GHz
Function
LO AC coupling
Value
2.7 pF + 0
Notes
de-Q with R = 12 for broadband operation < 1.75 GHz see also R1,R2 also sets load for optimum IF[1] L2 set by position of C12
12 pF + 12
C6 R1,R2 C8, L2 L3, C14 C15
IF AC coupling biases IF bases amp out match mixer output match amp input match
100 pF typ 50 typ
AC coupled AC coupled
short ckt open ckt
DC coupled DC coupled
see Table 3 for values vs. frequency not used not used 1900 MHz operation 1900 MHz operation 27 nH 1.3 pF[2] 3.3 pF[2]
900 MHz operation 900 MHz operation only 900 MHz operation 900 MHz operation only
Notes: 1. Noise Optimum at R1, R2 = 150 2. Optional
7-71
mixer LO input Cbl 1000 pF LO in C1 R3 LO in 10 pF C6 Rterm mixer IF input C6 Amp1 Ve1 Amp RF in standby input enable Amp1 Ve2 gnd Mixer RF out mixer RF output L3 R2 IF in Amp Ve2 R1 IF in Amp RF out Ref gnd 22 pF Amp Vc Mixer Vc 0.01 F Vcc
C8 Amp RF out Amp Ve2 Amp1 Ve1 Amp RF in C15 enable standby input Sideband Filter Mixer RF out L3 Amp1 Ve2 gnd C14 Amp L2 RF output Vcc C12 (100 pF)
Frequency, MHz L2, nH C8, pF 900 12.5 2.2 1500 5.4 2.2 1800 3.1 2.2 1900 2.8 2.2 2400 1.6 2.2
Table 3. Amp Output Match Component Values vs. Frequency.
Figure 13. Mixer Only Use (AC Coupled Single-ended Use Shown). Refer to Table 2 for Component Values.
Figure 14. 900 MHz Use. Refer to Table 2 for Component Values.
single-ended mixer LO input
Cbl (>100 pF) LO in C1 R3 LO in
differential mixer LO input
Cbl (>100 pF) LO in LO in Cbl (>100 pF)
1. LO in and LO bar in are identical; either can be used as the single-ended LO input with the other AC grounded. 2. R3 lowers the Q of the blocking capacitor to remove possible resonances for broadband operation below 1.75 GHz.
Figure 15. LO Connections for Singleended Operation.
Figure 16. LO Connections for Balanced Operation. 1. The IF pins require a bias voltage to operate properly (see Table 4). When the IF is AC coupled, this voltage is supplied from the Ref pin via R1 and R2. When the IF is DC coupled, the voltage is externally generated and the Ref pin is not used. 2. The base current is small, so to 1st order the value of R1, R2 can be selected to set the IF load impedance (50 -200 ohm typ.) 3. IF in and IF bar in are identical; either can be used as as the single-ended IF input with the other AC grounded. 4. Rterm (optional) should be the same value as the IF source impedance. It improves LO rejection by balancing the IF port and also de-Q's C6.
10 pF 1000 pF Ref C6 Rterm single-ended mixer IF input, C6 AC coupled R2 IF in R1 IF in
balanced mixer IF input, AC coupled
10 pF 1000 pF Ref C6 R2 IF in C6
Figure 18. IF Connections for AC Coupled Balanced Use.
R1 IF in
Figure 17. IF Connections for AC Coupled Single-ended Use.
balanced mixer IF input, DC coupled. DC level of IF source must be at V base (Table 4). IF @ V base
Ref IF in IF in
Vcc, V 2.7 3.0 3.5 4.0 4.5 5.0
Vbase, V 1.5 1.5 1.5-1.75 1.5-2.0 1.5-2.25 1.5-2.5
1. For DC coupled operation, the IF input must also supply Vbase to both IF in and IF in bar, per the values in Table 4. Ref pin is not used.
Figure 19. IF Connections for DC Coupled Use.
Table 4. Vbase vs. Vcc. Vbase is the required bias at the IF ports.
7-72
Part Number Ordering Information
Part Number HPMX-2006-TR1 HPMX-2006-BLK No. of Devices 1000 25 Container Tape and Reel Tape
Package Dimensions
JEDEC Standard SSOP-16 Package
4.445 (0.175) REF. DIMENSIONS MIN. MAX. 1.372 (0.054) 1.575 (0.062) 0.127 (0.005) 0.254 (0.010) 0.203 (0.008) 0.305 (0.012) 0.178 (0.007) 0.254 (0.010) 4.801 (0.189) 5.004 (0.197) 5.867 (0.231) 6.121 (0.241) 0.635 BSC (0.025) 3.835 (0.151) 3.988 (0.157) 0.305 (0.012) 0.457 (0.018) 0.533 (0.021) 0.787 (0.031) 0 8
HPMX 2006 YYWW
E1 E
SYMBOL A A1 b C D E e E1 h L
e TYP. D h x 45 -
A
b TYP.
L A1 DIMENSIONS IN MILLIMETERS AND (INCHES).
C
7-73


▲Up To Search▲   

 
Price & Availability of HPMX-2006

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X